Journal of Organometallic Chemistry, 304 (1986) 309-321 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND REAKTIONEN VON DIPHOSPHEN-KOMPLEXEN $RP=PR[M(CO)_5]_3$ (M = Cr, Mo, W)

GOTTFRIED HUTTNER*, JUTTA BORM und LASZLO ZSOLNAI

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz (B.R.D.)

(Eingegangen den 29. Oktober 1985)

Summary

Decacarbonyldimetallates $Na_2M_2(CO)_{10}$ (M = Cr, Mo, W) react with dihalophosphanes, (R)P(Cl)₂, to yield trinuclear diphosphene complexes of the form RP=PR[M(CO)₅]₃. The by-products of these reactions are diphosphane- and phosphido-bridged complexes.

The trinuclear diphosphene compounds add HX ($X = CH_3COO$, CH_3O) or dienes to the P=P double bond; in the course of these additions one M(CO)₅ group is cleaved and binuclear derivatives of diphosphanes are obtained.

Zusammenfassung

Decacarbonyldimetallate, $Na_2M_2(CO)_{10}$ (M = Cr, Mo, W), reagieren mit Dihalogenphosphanen, (R)P(Cl)₂, under Bildung dreikerniger Diphosphen-Komplexe, RP=PR[M(CO)₅]₃. Als Nebenprodukte werden bei diesen Synthesen, Diphosphanund Phosphid-verbrückte Komplexe beobachtet.

Die dreikernigen Diphosphen-Komplexe lagern HX ($X = CH_3COO, CH_3O$) oder Diene an die P=P-Doppelbindung an. Dabei wird eine M(CO)₅-Gruppe abgespalten und zweikernige Diphosphan-Derivate werden erhalten.

Einleitung

Die Umsetzung von Decacarbonyldimetallaten Na₂M₂(CO)₁₀ (M = Cr, Mo, W [1]) mit vicinalen Dihalogenverbindungen (R)X(Hal)₂ der fünften Hauptgruppe bildet einen einfachen Zugang zu Verbindungen mit X-X oder M-X Mehrfachbindungen P: [2], As: [3], Sb: [4], Bi: [5].

Wir berichten hier über die Anwendung dieses Prinzips zur Synthese dreikerniger Diphosphen-Komplexe $RP=PR[M(CO)_5]_3$, sowie über Additionsreaktionen an die P=P-Doppelbindung dieser Komplexe.

Diskussion

Synthese von $RP = PR[M(CO)_5]_3$

Bei der Reaktion von $Na_2M_2(CO)_{10}$ mit (R)P(Cl)₂ entstehen die Verbindungen Ia-g als Hauptprodukte.

Die Reaktionen verlaufen, wenigstens vermutlich zum Teil, über die intermediäre

Fig. 1. Ansicht der Struktur von Ib.

TABELLE 1					
DIE WICHTIGSTEN	ABSTÄNDE (pm)	UND '	WINKEL	(°) VON	i ib ª

P(1)-P(2)	214(1)	(214(1))
P(1) - W(3)	253.8(9)	(253.9(9))
P(2) - W(2)	253.2(7)	(254.0(7))
P(1) - W(1)	259.2(9)	(260.1(9))
P(2) - W(1)	261.6(6)	(260.0(7))
P(1) - C(1)	185(2)	(185(2))
P(2)-C(7)	183(3)	(179(2))
$W(3)-C_{CO}$	$189(2)_{ax} - 205(3)_{eg}$	$(201(3)_{ax} - 207(2)_{eq})^{2}$
$W(2)-C_{CO}$	$192(4)_{ax} - 203(3)_{ea}$	$(189(3)_{ax}-205(3)_{ea})$
$W(1)-C_{CO}$	$196(3)_{ax} - 204(4)_{eq}$	$(196(3)_{ax} - 205(4)_{eq})$
P(2) - P(1) - W(3)	126.7(4)	(130.5(4))
P(1)-P(2)-W(2)	127.3(3)	(129.3(4))
P(1)-P(2)-C(7)	104(1)	(104(1))
P(2) - P(1) - C(1)	106(1)	(104(1))
P(2) - P(1) - W(1)	66.3(3)	(65.7(3))
P(1) - P(2) - W(1)	65.1(3)	(65.8(3))
P(1)-W(1)-P(2)	48.6(3)	(48.5(3))
C(14)-W(1)-C(13)	161(1)	(176(1))
C(15)-W(1)-C(16)	177.1(9)	(163(1))
Torsionswinkel (°)		
P(1)-P(2)-W(1)-C(14)	-175.7	(175.4)
W(2)-P(2)-P(1)-W(3)	-123.6	(127.7)
C(7)-P(2)-P(1)-C(1)	151.7	(-142.2)

^a In Klammern: Die jeweils entsprechenden Werte für das zweite unabhängige Molekül im Kristall.

Bildung von Phosphiniden-Komplexen $RP[M(CO)_5]_2$ [2a,6]: Die Reaktionsprodukte sind nach Abziehen des Lösungsmittels zunächst orangefarben; beim Aufnehmen in Methylenchlorid bilden sich die für Phosphiniden-Komplexe charakteristische, intensiv blau-grünfarbenen Lösungen. Die intensiven Farben verblassen jedoch rasch, und bei der chromatographischen Aufarbeitung erhält man gelbe bis rote Produkte von denen die Verbindungen I den Hauptanteil ausmachen.

Der beschriebene Farbwechsel lässt sich damit erklären, dass beim Aufnehmen in Methylenchlorid die orangefarbenen THF-Addukte $RP[M(CO)_5]_2(THF)$ in basenfreie, intensiv farbige Phosphiniden-Komplexe $RP[M(CO)_5]_2$ übergehen, die dann zu Diphosphen-Komplexen weiterreagieren. Der letzte Schritt ist dadurch wahrscheinlich gemacht, dass wechselseitige Umwandlungen von $RX[L_nM]_2$ und $RX=XR[L_nM]_3$ mehrfach auch präparativ realisiert wurden [7,8].

Die Struktur der Verbindungen I ergibt sich zweifelsfrei aus dem Vergleich ihrer spektroskopischen Daten (Tab. 3) mit denen der bereits früher auch strukturanalytisch charakterisierten Verrbindung Ia.

Da Ib unter EI-Bedingungen im Massenspektrum als Peak mit der höchsten Molmasse nur M^+ -28 erkennen liess, wurde sein Bau zusätzlich noch strukturanalytisch bestätigt (Fig. 1, Tab. 1) [9].

Ia und Ib bilden isotype Strukturen mit jeweils zwei Formeleinheiten in der asymmetrischen Einheit der Elementarzelle. Signifikant verschieden sind erwartungsgemäss nur diejenigen Abstände, die Bindungen zu den Wolfram- und Chromatomen betreffen, während die übrigen Strukturparameter einschliesslich der die Konformation beschreibenden Torsionswinkel der Verbindungen Ia und Ib einander sehr ähnlich sind. Auffällig ist, dass der Unterschied zwischen den P-M-Bindungslängen der end-on und der side-on gebundenen $M(CO)_5$ -Einheiten in Ia noch etwa 13 pm beträgt, während er auf nurmehr 7 pm in Ib reduziert ist (Tab. 1).

Nebenprodukte

Auf die intermediäre Bildung von Phosphiniden-Komplexen bei der Darstellung von I wurde oben verwiesen. Bei der Darstellung von If, g beobachtet man als Nebenreaktion die Bildung der Dichlordiphosphan-Komplexe IIa, b.

$$(R)P(CI)_{2} + Na_{2}Cr_{2}(CO)_{10} \xrightarrow{THF} (CO)_{5}Cr \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} Cr(CO)_{5} + I$$

$$(IIa: R = Et; (If)$$

$$IIb: R = ^{n}Bu) (Ig)$$

Die Bildung dieser Verbindungen weist auf die schrittweise Enthalogenierung der Edukte (R)P(Cl)₂ durch Na₂Cr₂(CO)₁₀ hin. Ob dabei radikalische Zwischenstufen (R)P(Cl)[Cr(CO)₅] als Intermediate auftreten oder ob die Reaktionen durch Metallhalogenaustausch im Sinne der Bildung von {(R)P(Cl)[Cr(CO)₅]} Na und anschliessende kondensierende Kopplung mit (R)P(Cl)₂[Cr(CO)₅] gebildet werden, kann aus den Experimenten nicht abgeleitet werden. Für den Halogen-Metall-Austausch sprechen präparative Untersuchungen an (R)P(Cl)₂[L_nM] [10]; radikalische Intermediate scheinen in Analogie zu den unerwartet stabilen Verbindungen L_nMSR [11] ebenfalls nicht unwahrscheinlich. Die Verbindungen II sind kristalline gelbe Festkörper, deren Zusammensetzung und Bau aus den spektroskopischen Daten im Vergleich mit anderen Komplexen (R)X(Cl)-(Cl)X(R)[M(CO)₅]₂ [12] gesichert ist.

Bei der Darstellung von Ia tritt als Nebenprodukt der Diphosphan-Komplex III auf.

$$(Ph)P(CI)_{2} + Na_{2}Cr_{2}(CO)_{10} \xrightarrow{THF} (CO)_{5}Cr \xrightarrow{P} \xrightarrow{P} Cr(CO)_{5} + Ia$$

$$H Ph$$

$$(III)$$

Unter den hier angewendeten Reaktionsbedingungen konnte die Bildung des zu II homologen Dichlordiphosphan-Komplexes (Ph)P(Cl)–(Cl)P(Ph)[Cr(CO)₅]₂ nicht beobachtet werden, obwohl dieser Komplex stabil und in zwei stereoisomeren Formen auch röntgenographisch charakterisiert ist [12a]. Als Entstehungsweg von III sind mehrere Alternativen denkbar: III könnte aus einer zu II analogen Dichlordiphosphan-Vorstufe durch Metallhalogenaustausch und nachfolgende Hydrolyse gebildet werden; denkbar wäre auch, die Reduktion eines Diphosphen-Komplexes (Ph)P=P(Ph)[Cr(CO)₅]₂ zum entsprechenden Dinatriumdiphosphid-Derivat mit nachfolgender Hydrolyse. Geeignete Bedingungen für die jeweils notwendige Hydrolyse bietet das zur Chromatographie verwendete Silicagel. Auch eine H-Abstraktion aus dem Solvens stellt einen möglichen Reaktionsschritt dar [13]. III ist ein kristalliner gelber Festkörper, dessen Identität durch Analyse und Spektren sowie durch den Vergleich mit anderen Diphosphan-Komplexen [14] gesichert ist. Bei der Umsetzung von (^tBu)P(Cl)₂ mit Na₂Cr₂(CO)₁₀ war als Hauptprodukt der Phosphiniden-Komplex ^tBuP[Cr(CO)₅]₂ isoliert worden [2b]. Mit den Decacarbonyldimetallaten von Molybdän und Wolfram reagiert (^tBu)P(Cl)₂ zunächst analog: Nach Abziehen des als Solvens verwendeten THF erhält man tiefblaue Reaktionsmischungen, die mit ihrer intensiven Farbe auf die Bildung der entsprechenden Phosphiniden-Komplexe hinweisen. Beim Aufnehmen dieser Reaktionsmischungen in Methylenchlorid entstehen zunächst auch tiefblaue Lösungen, die jedoch innerhalb von 5 (Mo) bzw. 20 min (W) eine rote Farbe annehmen. Die einzigen bislang aus dem Gemisch von Zersetzungsprodukten chromatographisch rein erhaltenen Verbindungen sind die roten, kristallinen Komplexe IV.

Der Weg auf dem diese Komplexe entstehen ist unklar; die Anwesenheit von PH-Funktionen lässt, wie oben, die Hydrolyse von vorgebildeten Natriumsalzen vermuten; ebenso würde aber auch H-Abstraktion aus dem Lösungsmittel eine Erklärung bieten [13].

Von den beiden für Verbindungen des Typs IV denkbaren Isomeren (*cis*- bzw. *trans*-ständige Reste R) wird jeweils nur ein Isomer erhalten. Sowohl ³¹P- als auch ¹H-NMR-Spektren belegen diese Aussage. Die Röntgenstrukturanalyse von IVb [8]

Fig. 2. Ansicht der Struktur von IVb.

W(1) - W(1')	301.7(2)	P(1) - W(1) - P(1')	103.9(2)
W(1) - P(1)	245.1(8)/244.7(6)	W(1) - P(1) - W(1')	52.0(2)
$W(1)-C_{CO}(ax)$	201(2)/201(3)	P(1) - W(1) - C(1)	87.0(8)/84.6(6)
$W(1)-C_{CO}(eq)$	201(2)/199(2)		
P(1) - C(5)	183(3)	C(1)-W(1)-C(3)	85(1)
$P(1) - H(1)^{a}$	130	C(2)-W(1)-C(4)	176.6(9)
		C(4)-W(1)-P(1)	94(1)/86.6(7)
		C(4)-W(1)-C(1)	86.5(8)/92(1)
		W(1) - P(1) - C(5)	127.2(7)

TABELLE 2

DIE WICHTIGSTEN ABSTÄNDE (pm) UND WINKEL (°) VON IVb

^a Angenommen.

zeigt, dass das sterisch weniger belastete trans Isomer gebildet wird (Fig. 2, Tab. 2) [15].

Wie in Verbindungen $[W(CO)_4]_2$ - μ_2 - L_2 üblich [15], bildet die Gruppierung der Ringatome W und L eine Ebene. Die Koordination der Wolfram-Zentren ist idealisiert oktaedrisch; zwischen den Wolfram-Zentren besteht eine Bindung (Tab. 2).

Reaktionen von $RP = PR(Cr(CO)_5)$

Für Ia hatten wir die Freisetzung der side-on gebundenen $Cr(CO)_5$ -Einheit unter Bildung des Diphosphen-Komplexes (Ph)P=P(Ph)[Cr(CO)_5]_2 früher schon beschrieben [2a]. Ebenso hatten wir beobachtet, das Ia die für P=P-Doppelbindungen charakteristischen Reaktionen ergibt [16], ohne dass es notwendig ist die Verbindung RP=PR[Cr(CO)_5]_2 mit unkomplexierter P=P-Doppelbindung freizusetzen.

Wir zeigen hier, dass dieses Syntheseprinzip sich von Ia (R = Ph) auch auf Verbindungen I mit anderen Resten R übertragen lässt.

Als charakteristische Reaktion von RP=PR-Komplexen erweist sich die stereoselektive *trans*-Addition von HX [16]. Neben Wasser, Alkoholen und Aminen [16] lassen sich auch Carbonsäuren addieren.

$$Ia + CH_{3}COOH \longrightarrow (CO)_{5}Cr -P - Cr(CO)_{5} + \cdots$$

$$O Ph$$

$$CH_{3}CO$$

Ia reagiert mit Essigsäure zum gelb-orangefarbenen Additionsprodukt V.

V ist ein kristalliner Festkörper, der besonders in Lösung sehr hydrolyse- und luftempfindlich ist. Seine Charakterisierung erfolgt zweifelsfrei durch Analyse, Massen-, IR-, ¹H- und ³¹P-NMR-Spektren.

Ähnlich wie für Ia beschrieben [16] reagieren auch Ic und If mit Methanol unter 1,2-Addition.

Die gelben kristallinen Verbindungen VI sind analytisch und spektroskopisch gesichert. Für die Umwandlung Ic \rightarrow VIa wird die bei entsprechenden Reaktionen von Ia gefundene strenge Stereoselektivität [16] ¹H- und ³¹P-NMR-spektroskopisch nachgewiesen. Im Vergleich mit den Reaktionen von Ia wird man auch hier auf erythro-Selektivität schliessen dürfen [16].

Bei der Methanol-Addition an If entsteht dagegen, wie die NMR-Spektren zeigen, ein Gemisch an Stereoisomeren. Die Stereosektivität der 1,2-Additionsreaktionen von Verbindungen des Typs I hängt daher offenbar von den sterischen und elektronischen Eigenschaften der Reste R ab.

[2 + 4]-Cycloadditionen verlaufen dagegen offenbar für R = Aryl und R = Alkyl stereoselektiv. Im Ergebnis entsprechen sie einer *cis*-Addition der beiden terminalen Gruppe des Diens an die P=P-Doppelbindung [16]. So reagiert Ig mit 2,3-Dimethylbutadien unter Bildung des Additionsproduktes VII.

Die spektroskopischen Daten beweisen, dass nur eines der beiden möglichen Isomeren gebildet wird. Im Vergleich mit den strukturanalytisch gesicherten Beispielen analoger Reaktionen [16,17] kann man daraus schliessen, dass die Stereochemie von VII im Ergebnis einer synchronen [2 + 4]-Cycloaddition entspricht.

Experimenteller Teil

Sämtliche Arbeiten wurden unter N₂ als Schutzgas mit frisch destillierten und absolutierten Lösungsmitteln durchgeführt. Das zur Chromatographie benützte Kieselgel (Korngrösse 0.06–0.2 mm Fa. Merck) bzw. Kieselgur (Riedel de Haen) wurde bei Raumtemperatur im Hochvakuum (10^{-2} mbar) entgast und mit N₂ beladen. Massenspektren: Varian MAT-112S, Einlass Ofenschiffchen; IR-Spektren: Zeiss IMR 40, CaF₂-Küvetten (w = schwach, m = mittel, s = stark, vs = sehr stark, vw = sehr schwach, sh = Schulter, b = breit); ¹H-NMR-Spektren: Bruker WP 80 FT, 80 MHz (Standard: intern durch Lösungsmittel; Aceton-*d*₆ 2.04 ppm, CDCl₃ 7.24 ppm rel. TMS; S = Singulett, D = Dublett, Q = Quartett, M = Multiplett); ³¹P-NMR-Spektren: Bruker Multikernspektrometer WP 80 FT, 32.38 MHz (Standard extern: P(OCH₃)₃ mit δ (P(OCH₃)₃) 139 ppm rel. 85% H₃PO₄). Ausgangssubstanz: Na₂M₂(CO)₁₀ [1]; (R)P(Cl)₂ [18].

Darstellung der Verbindungen I, II, III und IV

1 g Na₂M₂(CO)₁₀ (M = Cr: 2.33 mmol; M = Mo: 1.93 mmol; M = W: 1.44 mmol) werden in 100 ml THF gelöst und mit der äquimolaren Menge des entsprechenden Dichlorphosphans versetzt (Tab. 4). Nach zweistündigem Rühren filtriert man vom entstandenen Niederschlag über 3 cm Kieselgur ab und entfernt das Lösungsmittel bei 20°C und 10^{-2} mbar. Der ölige Rückstand (für M = Cr, R = Et, ⁿBu besitzt er grüne Farbe; für R = ^tBu, M = Mo, W blaue Farbe) wird in CH₂Cl₂ aufgenommen und 18 h bei 20°C gerührt. Die nun rot-orange Lösung wird mit 3 g Kieselgel versetzt, bis zur Rieselfähigkeit aufgezogen und bei -30° C über

Verbindung		g	IR (cm ^{-1}), ν (CO)	¹ H-NMR	³¹ P-NMR ^c	
	M =	R =	n-Pentan	CH ₂ Cl ₂	(ppm)	(ppm)	
Ia	Cr	Ph	2089w, 2062s, 2012m, 2003s, 1998m, 1986w, 1962s, 1952vs, 1932w	2090m, 2062s, 2015w, 1999sb, 1948sb	Ph: 7.55–8.05 (M, 10H) ^a	97	
Ib	w	Ph	2101w, 2075m, 2068m, 2036m, 2010m, 2001m, 1986m, 1960vs,	2102m, 2068s, 2010s, 1997s, 1942vsb 1946vs,	Ph: 7.45–8.15 (M, 10H) ^a	- 16.6	
Ic	Сг	Anisyl	2086w, 2060s, 2007m, 2000s, 1997m, 1982w, 1959s, 1949vs, 1933w	2088m, 2060s, 2010wsh, 1998sb, 1947sb	OCH ₃ : 3.88 (S, 6H) ^b Ph: 7.10–8.05 (M, 8H)	108.5	
Id	Cr	Me	2088w, 2060s, 2011m, 1996s, 1990s, 1987wsh, 1962vs, 1951s	2089m, 2061s, 2010w, 1986sb, 1956sb, 1947sb	Me: 1.99 ($^{2}J(PH)$ 4 Hz) ^b (Pseudotriplett)	78.1	
Ie	Мо	Ме	2098w, 2071s, 2014m, 2009s, 1997s, 1965sh, 1957vs	2101m, 2073s, 2008mb, 1991mb, 1952vsb	CH ₃ : 2.01 (${}^{2}J(PH)$ 5 Hz, 6H) Pseudotriplett ^b	27.2	
If	Cr	Et	2086w, 2060s, 2007m, 1988s, 1960vs, 1947s	2089w, 2065s, 1986m, 1958vsb	Et: 1.1–1.94 (M, 10H) ^b	103.7	
Ig	Cr	ⁿ Bu	2085w, 2059s, 2007m, 1989s, 1958vs, 1946s	2088m, 2062s, 2008w, 1987sb, 1955sb, 1945sb	CH ₃ : 0.99 (T, 6H) ^b (² J(HH) 6.5 Hz) (CH ₂) ₃ : 1.15–2.76 (M, 12H)	99.9	

TABELLE 3

IR-, ¹H-NMR- UND ³¹P-NMR-DATEN DER VERBINDUNGEN [M(CO)₅]₃RP=PR (Ia-f)

^a Aceton- d_6 . ^b CDCl₃. ^c CH₂Cl₂.

Kieselgel $(15 \times 2.5 \text{ cm})$ chromatographiert. Die Reaktionsprodukte werden aus CH₂Cl₂/n-Pentan umkristallisiert.

Laufmittelverhältnisse, Ausbeuten, Schmelzpunkte, Molmassen und Analysendaten der Verbindungen I–VI sind in Tab. 4 zusammengestellt. Die Massenspektren der Verbindungen I sind Tab. 5 zu entnehmen.

Spektroskopische Daten der Verbindungen II, III und IV (IR: cm^{-1} ; NMR: δ -Werte in ppm)

Ha: IR (n-Pentan): 2069m, 1977s, 1965vs. ¹H-NMR (CDCl₃): 0.86–1.76 (M, 6H); 2.15–2.94 (M, 4H). ³¹P-NMR (CH₂Cl₂/0°C): 184. MS (m/e (I_r)): M^+ 574(8), $M^+ - n$ CO (n = 1-10) 546(1) – 294(12), $M^+ - 2$ Cl 504(1), $M^+ - 10$ CO – Cl 259(29), $M^+ - 2$ Cl – Cr(CO)₅ 311(100), Cr₂P₂Et₂Cl⁺ 259(10), CrP₂EtCl⁺ CrPEt⁺ 112(19), Cr⁺ 52(10).

TABELLE 4

SYNTHESE- UND ANALYSENDATEN DER VERBINDUNGEN I-IV

mg (mmol) III (CO) ₅ CrP(Ph)(Cl) ₂ B60 (2.32) Ib (CO) ₅ WP(Ph)(Cl) ₂ 860 (2.31) Ic (CO) ₅ CrP(Anisyl)(Cl) ₂ 720 (1.43) Id (CO) ₅ CrP(Me)(Cl) ₂ 930 (2.30) Ie P(Me)(Cl) ₂ 10 (2.30) 11 P(Cl) ₂ 300 (2.30) 12 P(Cl) ₂ 300 (2.30) 12 P(Cl) ₂ 300 (2.30) 300 (2.30)	5/1 5/1 5/1 1/1	mg (%) 170 (14) 80 (9) 400 (41)	(°C) 141 180	(Molmasse)		
III (CO), CrP(Ph)(Cl)_2 Ib (CO), WP(Ph)(Cl)_2 860 (2.32) 860 (2.32) Ic (CO), WP(Ph)(Cl)_2 120 (1.43) 720 (1.43) Ic (CO), CrP(Anisyl)(Cl)_2 930 (2.31) 930 (2.31) Id (CO), CrP(Me)(Cl)_2 Id 710 (2.30) Ie P(Me)(Cl)_2 11a P(Et)(Cl)_2 11 900 (2.30) 11 P(mbu)(Cl)_2	5/1 5/1 1/1	170 (14) 80 (9) 400 (41)	141 180		,	=
B60 (2.32) Ib (CO), WP(Ph)(Cl) ₂ 1c (CO), CP(Anisyl)(Cl) ₂ 1d (CO), CPP(Me)(Cl) ₂ 930 (2.31) 930 (2.31) 1d (CO), CPP(Me)(Cl) ₂ 1d (CO), CPP(Me)(Cl) ₂ 1d (CO), CPP(Me)(Cl) ₂ 1e P(Me)(Cl) ₂ 11a P(E)(Cl) ₂ 11b P(E)(Cl) ₂ 11b P(E)(Cl) ₂ 200 (2.30) 11	5/1 1/1 1/1	80 (9) 400 (41)	180	C ₂₂ H ₁₂ Cr ₂ O ₁₀ P ₂	43.87	2.01
Ib (CO), WP(Ph)(Cl) ₂ 1c 720 (1.43) 1c (CO), CrP(Anisyl)(Cl) ₂ 930 (2.31) 930 (2.31) 1d 710 (2.30) 1e P(Me)(Cl) ₂ 11a P(Eb)(Cl) ₂ 11a P(Eb)(Cl) ₂ 11b P(Eb)(Cl) ₂ 11b P(Eb)(Cl) ₂ 11b P("Bu)(Cl) ₂	5/1 1/1 1/1	80 (9) 400 (41)	180	(602.27)	(43.04)	(1.84)
720 (1.43) Ic (CO), CrP(Aniisyl)(Cl) ₂ 930 (2.31) Id (CO), CrP(Me)(Cl) ₂ 710 (2.30) Ie P(Me)(Cl) ₂ 200 (1.88) IIa P(Eb)(Cl) ₂ 300 (2.30) If P(ⁿ Bu)(Cl) ₂	1 1 1 1	400 (41)		$C_{27}H_{10}O_{15}P_2W_3$	26.85	0.91 ^d
Ic (CO), CrP(Anisyl)(Cl) ₂ 930 (2.31) Id (CO), CrP(Me)(Cl) ₂ 1e (CO), CrP(Me)(Cl) ₂ 1e P(Me)(Cl) ₂ 220 (1.88) 11a P(Eh)(Cl) ₂ 300 (2.30) 1f P("Bu)(Cl) ₂ 300 (2.30) 1f P("Bu)(Cl) ₂	2 1/1 2	400 (41)		(1187.86)	(27.52)	(0.0)
930 (2.31) 1d (CO), CrP(Me)(Cl), 1e (CO), CrP(Me)(Cl), 1e P(Me)(Cl), 220 (1.88) 11a P(El)(Cl), 300 (2.30) 1f P("Bu)(Cl), 270.7.30)			127	C ₂₉ H ₁₄ Cr ₃ O ₁₇ P ₂	39.60	1.69 ^d
Id (CO), CrP(Me)(CI), 1e (CO), CrP(Me)(CI), 1e P(Me)(CI), 220 (1.88) 11a P(E)(CI), 300 (2.30) 1f P("Bu)(CI), 270.7 37)	1/1			(852.35)	(39.73)	(1.66)
710 (2.30) 1e P(Me(CI) ₂ 220 (1.88) 11a P(Et)(CI) ₂ 300 (2.30) 1f P("Bu)(CI) ₂ 270.7 37)		430 (56)	136	C ₁₇ H ₆ Cr ₃ O ₁₅ P ₂	29.57	0.99 ^d
Ie P(Me)(Cl) ₂ 220 (1.88) 11a P(Et)(Cl) ₂ 300 (2.30) 1f P("Bu)(Cl) ₂ 11b P("Bu)(Cl) ₂				(668.16)	(29.48)	(0.80)
220 (1.88) 11a P(Et)(Cl) ₂ 300 (2.30) 1f P("Bu)(Cl) ₂ 270.7 33)	3/1	90 (12)	140	C ₁₇ H ₆ Mo ₃ O ₁₅ P ₂	24.95	0.76 4
11a P(Et)(Cl) ₂ 300 (2.30) 1f P("Bu)(Cl) ₂ 270.2 33)				(800.00)	(25.13)	(0.61)
300 (2.30) If IIb P("Bu)(Cl) ₂	5/1	250 (19)	155	C ₁₄ H ₁₀ Cl ₂ Cr ₂ O ₁₀ P ₂	29.24	1.75
If IIb P("Bu)(Cl) ₂				(575.08)	(29.15)	(1.63)
11b P("Bu)(Cl) ₂	0/1	280 (35)	158	C ₁₉ H ₁₀ Cr ₃ O ₁₅ P ₂	31.70	1.45 ^d
IIb $P(^{n}Bu)(CI)_{2}$				(696.22)	(32.57)	(1.00)
	5/1	100 (14)	141	C ₁₈ H ₁₈ Cl ₂ Cr ₂ O ₁₀ P ₂	34.25	2.87
(707) 0/0				(631.18)	(34.50)	(2.90)
Ig	1/1	350 (40)	125	$C_{23}H_{18}Cr_{3}O_{15}P_{2}$	36.72	2.41
)				(752.33)	(36.89)	(2.27)
IVa P('Bu)(Cl),	10/1	40 (7)	160	(C ₁₆ H ₂₀ Mo ₂ O ₈ P ₂	32.34	3.39
300 (1.88)				(594.16)	(31.91)	(3.46)
IVb $P(^{L}Bu)(CI)$,	10/1	85 (13)	188	$C_{16}H_{20}O_{8}P_{2}W_{2}$	24.96	2.62
225 (1.42)				(769.98)	(24.95)	(2.56)

^{*a*} n-Pentan/CH₂Cl₂. ^{*b*} % bez. auf Phosphan. ^{*c*} (Zers.), unkorrigierte Werte. ^{*d*} mit 1/2 Mol CH₂Cl₂ pro Formeleinheit.

	la		Ib ^b		Ic	-	Id		Ie ^h		١٤		Ig	
	m/e	<i>I</i> ,	m/e	<i>I</i> ,	m/e	<i>I</i> ,	m/e	I,	m/e	Ι,	m/e	I _r	m/e	Ir
+ W	792	7	1		852	7	668	99	800	1	969	∞	752	1
M ⁺ – CO	764	1	1160	ŝ	ł		640	1	<i>772</i>	1	I		I	
$M^+ - 2CO$	736	1	ł		796	1	612	1	744	1	ı			
$M^{+} - 3CO$	1		ł		I		584	1	ł		612		ı	
$M^{+} - 4CO$	I		1760	1	ı		556	4	688	9	I		ı	
$M^+ - 5CO$	I		1048	1	712	1	528	31	660	8	I	1	612	1
$M^{+} - 6CO$	652	ę	1020	1	ł		500	41	632	12	556	11	584	1
M ⁺ – 7CO	624	1	1		ţ		472	4	604	10	528	14	ŀ	
$M^+ - 8CO$	ı		964	1	628	1	444	78	576	26	500	4	528	1
$M^{+} - 9CO$	568	2	936	-	600	l	416	8	548	13	472	32	500	2
$M^{+} - 10CO$	540	9	1		572	1	388	47	520	13	44	49	472	1
M ⁺ – 11CO	512	e	880	-	<u>45</u>	1	360	43	492	6	416	14	44	
$M^{+} - 12CO$	484	ŝ	852	7	516	1	332	52	464	12	388	21	416	1
$M^{+} - 13C0$	456	e	ł		488	1	304	4	436	6	360	28	388	2
$M^{+} - 14CO$	428	4	796	1	460	-	276	41	408	×	332	30	360	7
$M^{+} - 15CO$	400	2	768	ŝ	432	1	248	62	380	15	304	27	332	2
$M_2P_2R_2^+$	320	38	584	ę	380	20	196	œ	284	16	224	6	ı	
$MP_2R_2^+$	268	6	ı		328	9	I		188	100	172	ę	ı	
$M_2P_2R^+$	243	7	507	4	273	1	181	7	269	100	195	9	223	1
$M_2^{-1}P_2^{+}$	166	7	430	1	166	7	166	21	254	82	166	41	166	14
MP_2^+	114	62	ı	·	114	1	I		158	68	114	4	114	1
+ HdW	84	100	ı		84	100	84	16	128	88	4 8	88	84	88
$P_2R_2^+$	216		216	1	276	1	ł		92	41	120	-	I	
PR^+	108	11	108	4	138	15	46	ę	4	100	60	17	88 88	1
R⁺	11	10	11	9	107	18	I		8	100	I		57	60
_+ M	52	100	Ι		52	100	52	×			52	100	52	20
C₃H5⁺	41	62	41	\$	41	93	I				41	28	41	100
C ₃ H ₃ ⁺	39	10	39	ę	39	13	ł				39	×	39	47
$C_{7}H_{7}^{+}$	61	4	91	٢	16	ę	I							
^a Für alle Kom	Iplexe I exi	stiert para	ullel zur ange rhliebenen (gebenen	Zerfallsreih	e noch ei iv aboer	n Fragmentie alten werder	erungsweg	, bei dem in der Verhin	n primären dung la ist	Schritt eine	M(CO) ₅ -0	Gruppe abg	cespalten wird
					www.	fengen vie		T. 1111 1 01		er pr Sunn	Gut I vevin I			I IIICHNICAL

Die Substanz zersetzen sich bei der Aufnahme der Spektren.

MASSENSPEKTREN DER VERBINDUNGEN Ia-g "

TABELLE 5

318

IIb: IR (n-Pentan): 2068m, 1974s, 1964vs, ¹H-NMR (CDCl₂): 1.03 (T. J(HH) 7 Hz. 6H); 1.35–2.20 (M, 8H); 2.30–3.08 (M, 4H). ³¹P-NMR (CH₂Cl₂/0°C): 181. MS $(m/e (I_r)): M^+ 630(17), M^+ - nCO (n = 2-10) 574(2) - 350(7), M^+ - Cl 595(2),$ M^+ - 2Cl 560(3), M^+ - 10CO - Cl 315(3), M^+ - 10CO - 2Cl 280(43), M^+ - 2Cl - $Cr(CO)_{5}$ 368(100), $CrP_{2}Bu_{2}Cl^{+}$ 263(25), $CrP_{2}Bu_{2}^{+}$ 228(37), $P_{2}Bu_{2}^{+}$ 176(9), $CrP_{2}Bu^{+}$ 171(29), $CrPBu^+$ 140(10), $C_3H_5^+$ 41(26), Cr^+ 52(61).

III: IR (n-Pentan): 2073w, 2062m, 2000w, 1961vs, 1947sh, 2342vw, 2307vw. ¹H-NMR (Aceton- d_6): 7.4–7.74 (M, 10H); 5.82 (D, ¹J(PH) 332 Hz) bzw. 5.76 (D, ¹J(PH) 332 Hz). ³¹P-NMR (CH₂Cl₂/0°C): 25.6 bzw. 26.4 (D, ¹J(PH) 332 Hz). MS $(m/e(I_r)): M^+$ (602(9), $M^+ - nCO(n = 4-10) 490(2) - 322(43), M^+ - 10CO - Cr$ 270(100), PR⁺ 108, R⁺ 77, Cr⁺ 52(100).

IVa: IR (n-Pentan): 2038w, 2031s, 1978m, 1971vs, 1967s, 1956wsh, ca. 2300vw, ¹H-NMR (CDCl₃): 1.59 (D, ³J(PH) 17 Hz, 18H); 6.72 (D, ¹J(PH) 325 Hz, 2H). ³¹P-NMR (CH₂Cl₂/0°C): 217 (D, ¹J(PH) 325 Hz). MS (m/e (I_r)): M^+ 594(8), $M^+ - nCO$ (n = 1-8) 566(8) - 370(9), $M^+ - 2R - 5CO$ 340(4), $M^+ - 2R - 6CO$ 312(27), $M^+ - 2R - 7CO 284(1)$, $M_2P_2^+ 254(24)$, $R^+ 57(46)$, $C_3H_5^+ 41(100)$, $C_3H_3^+$ 39(35).

IVb: IR (n-Pentan): 2039wsh, 2030s, 1972m, 1961vs, 1957s, 1946w, ca. 2300. ¹H-NMR (CDCl₃): 1.61 (D, ³J(PH) 18 Hz, 18H); 7.46 (D, ¹J(PH) 350 Hz, 2H). ³¹P-NMR (CH₂Cl₂/0°C): 162 (D, ¹J(PH) 350 Hz). MS (m/e (I_{r})): M^{+} 770(22), $M^+ - nCO(n = 1 - 8)$ 742(19) - 546(14), $M^+ - 2R - 5CO$ 516(8), $M^+ - 2R - 6CO$ 488(27), $M^+ - 2R - 7CO$ 460(1), $M_2P_2^+$ 432(24), R^+ 57(46), $C_2H_5^+$ 41(100), $C_2H_2^+$ 39(35).

Darstellung der Verbindungen V, VI und VII

100 mg I werden in 30 ml Toluol gelöst und 15 min bei 70°C gerührt (für Ic tritt dabei ein Farbwechsel nach violett ein). Anschliessend wird 1 ml Reagens zugegeben und solange weitergerührt, bis die Lösung gelb gefärbt ist (vgl. Tab. 6). Das Lösungsmittel wird bei 10^{-2} mbar entfernt, der Rückstand auf 1 ml Kieselgel aufgezogen und bei -30° C über Kieselgel (15×1.5 cm) chromatographiert. Umkristallisation aus Toluol/n-Pentan ergibt die Verbindungen V-VII in analysenreiner Form.

TABELLE 6

Verbindung	einges. Komplex mg (mmol)	Reagens	Reaktionszeit nach Zugabe (Min.)	Laufmittel ⁴	8
v	Ia 100 (0.13)	CH3COOH	45	1/2	
VIa	Ic 100 (0.12)	CH ₃ OH	15	1/2	
VIb	If 100 (0.14)	СН₃ОН	45-60	1/2	
VII	Ig 100 (0.13)	2,3-Dimethyl- butadien	90–120	1/1	ы. Т.А. .+
^a n-Pentan/Tol	uol.		P		·

SYNTHESEDATEN DER VERBINDUNGEN V-VII

Verbindung	Summenformel	Ausbeute ^a	Schmp. ^b	Analysenda	ten (Ber. (Gef.) (%))
	(Molmasse)	mg (%)	(°C)	c	Н
v	$C_{24}H_{14}Cr_2O_{12}P_2$ (660.31)	50 (58)	93	43.66 (44.06)	2.14 ^c (1.99)
VIa	$C_{25}H_{18}Cr_2O_{13}P_2$ (692.35)	60 (67)	151	43.37 (43.69)	2.62 (2.52)
VIb	$C_{15}H_{14}Cr_2O_{11}P_2$ (536.21)	60 (67)	146	33.60 (33.50)	2.61 (2.50)
VII	$C_{24}H_{28}Cr_2O_{10}P_2$ (642.42)	30 (36)	118	44.87 (45.18)	4.39 (4.35)

ANALYSENDATEN DER VERBINDUNGEN V-VII

^a (%) bez. auf I). ^b (Zers.), unkorrigierte Werte. ^c 15.75 (15.99) %Cr.

Laufmittelverhältnisse, Ausbeuten, Schmelzpunkte, Molmassen und Analysendaten der Verbindungen V-VII sind in Tab. 6 und 7 zusammengestellt.

Spektroskopische Daten der Verbindungen V, VI und VII (IR: cm^{-1} ; NMR: δ -Werte in ppm)

V: IR (n-Pentan): 2073w, 2064m, 1992w, 1963s, 1957s, 1941m. ¹H-NMR (Aceton- d_6): 2.49 (S, 3H); 5.70 (DD, ¹J(PH) 334, ²J(PH) 14 Hz, 1H); 7.2–7.9 (M, 10H). ³¹P-NMR (CH₂Cl₂/0°C): 181.4 (D, J(PP) 186 Hz); 66.2 (Q, ¹J(PH) 334, J(PP) 186 Hz). MS (m/e (I_r)): M^+ 660(4), $M^+ - n$ CO (n = 1-10) 632(2) – 380(36), $M^+ - 10$ CO – Cr 228(20), $M^+ - 10$ CO – Ph 303(15), $M^+ - 10$ CO – CrCH₂COO 270(35), CrPRH₂⁺ 162(14), CrPR⁺ 160(6), CH₃CO⁺ 43(26).

VIa: IR (n-Pentan): 2072w, 2062m, 1979w, 1958vs, 1953sh, 2312vw. ¹H-NMR (Aceton- d_6): 3.8–4.22 (M, 9H), 6.21 (DD, ¹J(PH) 320, ²J(PH) 22 Hz); 6.88–7.79 (M, 8 H). ³¹P-NMR (CH₂Cl₂/0°C): 165.0 (D, J(PP) 169 Hz); 39.2 (Q, ¹J(PH) 320, J(PP) 169 Hz). MS (m/e (I_r)): M^+ 692(6) $M^+ - n$ CO (n = 5-10) 552(10) – 412(37), $M^+ - 10$ CO – Cr 360(42), CrPRH₂⁺ 192(10), CrPR⁺ 190(3), PR⁺ 138(2), C₇H₇⁺ 91(23), Cr⁺ 52(100).

VIb: IR (n-Pentan): 2073w, 2061m, 1984w, 1971sh, 1961vs, 1950vs, 1945s, 1932s, 2338w, 2300w. ¹H-NMR (CDCl₃): 3.75 (D, ²J(PH) 11 Hz, 3H); 1.05–2.67 (M, 10H); 5.62 (DD, ¹J(PH) 315, ²J(PH) 13 Hz, 1H). ³¹P-NMR (CH₂Cl₂/0°C): 191.1 (D, J(PP) 174 Hz), 32.2 (Q, ¹J(PH) 311, J(PP) 174 Hz); 170.2 (D, J(PP) 180 Hz); 15.9 (Q, ¹J(PH) 317, J(PP) 180 Hz). MS (m/e (I_r)): M^+ 536(4), $M^+ - nCO$ (n = 1-10) 508(1) – 256(18), $M^+ - 10CO - C_2H_4$ 228(16), $M^+ - 10CO - 2(C_2H_4)$ 200(27), CrPRH₂⁺ 114(9), CrPR⁺ 112(4), HP(OMe)Et⁺ 92(60), P(OMe)Et⁺ 91(100), Cr⁺ 52(63).

VII: IR (n-Pentan): 2069m, 2061m, 1986w, 1955s, 1950vs, 1948vs, 1933s. ¹H-NMR (CDCl₃): 1.02 (T, *J*(HH) 3.6, 3H); 1.9 (S, 6H); 1.2–1.76 (M, 6H); 2.5–2.8 (M, 4H). ³¹P-NMR (CH₂Cl₂/0°C): 24.2 MS (*m/e* (*I_r*)): M^+ 642(20), $M^+ - n$ CO (*n* = 1–10) 614(1) – 362(36), $M^+ - 10$ CO – Cr 310(65), PR⁺ 88(43), R⁺ 57(100), Cr⁺ 52(37), C₃H₂⁺ 43(57), C₃H₅⁺ 41(10).

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad-Godesberg, und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, Frank-

TABELLE 7

furt/Main, für die Unterstützung der Arbeit. Herrn Dipl. Chem. K. Knoll sind wir für die Aufnahme der Massenspektren zum Dank verpflichtet. Frau M. Glas danken wir für die Durchführung der Elementaranalysen.

Literatur

- 1 E. Lindner, H. Behrens und S. Birkle, J. Organomet. Chem., 17 (1968) 165.
- 2 (a) J. Borm, L. Zsolnai und G. Huttner, Angew. Chem., 95 (1983) 1018; Angew. Chem. Int. Ed. Engl., 22 (1983) 977; Angew. Chem. Suppl., (1983) 1463; (b) H. Lang, O. Orama und G. Huttner, J. Organomet. Chem., 291 (1985) 293; G. Huttner, J. Borm und L. Zsolnai, J. Organomet. Chem., 263 (1984) C33; zit. Lit.
- 3 (a) G. Huttner, H.-G. Schmid, A. Frank und O. Orama, Angew. Chem., 88 (1976) 255; Angew. Chem. Int. Ed. Engl., 15 (1976) 234; siehe auch [12]; (b) B. Sigwarth, L. Zsolnai, O. Scheidsteger und G. Huttner, J. Organomet. Chem., 235 (1982) 43.
- 4 (a) G. Huttner, U. Weber, B. Sigwarth und O. Scheidsteger, Angew. Chem., 94 (1982) 210; Angew. Chem. Int. Ed. Engl., 21 (1982) 215; Angew. Chem. Suppl., (1982) 411; siehe auch [12]; (b) U. Weber, L. Zsolnai und G. Huttner, J. Organomet. Chem., 260 (1984) 281.
- 5 Die Verbindungen $\operatorname{RP}[L_n M]_2$ entstehen ihrerseits wenigstens zum Teil aus den nicht isolierbaren einkernigen Derivaten $\operatorname{RP}[L_n M]$: J. Borm, G. Huttner und O. Orama, J. Organomet. Chem., im Druck.
- 6 J. v. Seyerl und G. Huttner, J. Organomet. Chem., 193 (1980) 207.
- 7 J. Borm, G. Huttner und L. Zsolnai, Angew. Chem., im Druck.
- 8 U. Weber, G. Huttner, O. Scheidsteger und L. Zsolnai, J. Organomet. Chem., 289 (1985) 357.
- 9 Die Daten sind beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen unter der Nummer 51642 interlegt. Messbedingungen: Synthex R3-Diffraktometer, Mo- K_{α} , λ 71.069 pm, Graphitmonochromator, ω -scan, $\Delta \omega = 1^{\circ}$ 1.8 < $\dot{\omega} < 29.3^{\circ}$ min⁻¹. Verbindung Ib. Raumgruppe $P2_1/c$; a 2455(2), b 1698(2), c 1895(1) pm; β 122.47(6)°; V 6664×10⁶ pm³; Z = 8; d_{ber} 2.37 g cm⁻³; μ -Mo- K_{α} 111 cm⁻¹; T 243 K; $R_1 = 0.055$, $R_2 = 0.062$. Verbindung IVb. Raumgruppe $P2_1/c$, a 905.8(7), b 1235(1), c 1387(1) pm; β 135.23(5)°; V 1093×10⁶ pm³; Z = 2; d_{ber} 2.34 g cm⁻³; μ -Mo- K_{α} 113.02 cm⁻¹; T 293 K; $R_1 = 0.040$, $R_2 = 0.049$.
- 10 H. Lang, G. Mohr, O. Scheidsteger und G. Huttner, Chem. Ber., 118 (1985) 574.
- 11 A. Winter, G. Huttner, L. Zsolnai, P. Kroneck und M. Gottlieb, Angew. Chem., 96 (1984) 986; Angew. Chem. Int. Ed. Engl., 23 (1984) 975.
- 12 (a) G. Huttner, P. Friedrich, H. Willenberg und H.-D. Müller, Angew. Chem., 89 (1977) 268; Angew. Chem. Int. Ed. Engl., 16 (1977) 260; (b) A.-M. Hinke, A. Hinke und. W. Kuchen, J. Organomet. Chem., 258 (1983) 307; U. Weber, L. Zsolnai und G. Huttner, Z. Naturforsch. B, im Druck.
- 13 H. Lang, G. Huttner, G. Mohr, B. Sigwarth, U. Weber, I. Jibril, L. Zsolnai und O. Orama, Z. Naturforsch. B, im Druck.
- 14 H. Lang, Dissertation Universität Konstanz, 1985.
- H. Vahrenkamp, Chem. Ber., 111 (1978) 3472; M.H. Link und L.R. Nassimbeni, Inorg. Nucl. Chem. Lett., 9 (1973) 1105; A. Winter, O. Scheidsteger und G. Huttner, Z. Naturforsch. B, 38 (1983) 1525; M. Herberhold und G. Süss, J. Chem. Res. (M), (1977) 2720; J. Chem. Res. (S), (1977) 246; M. Hohmann, L. Krauth-Siegel, K. Weidenhammer, W. Schulze und M.L. Ziegler, Z. Anorg. Allg. Chem., 481 (1981) 95.
- 16 J. Borm, G. Huttner, O. Orama und L. Zsolnai, J. Organomet. Chem., 282 (1985) 53.
- 17 G. Huttner und I. Jibril, Angew. Chem., 96 (1984) 708; Angew. Chem. Int. Ed. Engl., 23 (1984) 739.
- 18 Th. Weil, B. Prijs und H. Erlenmeyer, Helv. Chim. Acta, 36.2 (1953) 1314.